Abstract

Changes in the transmission of commercially available semiconductor doped glasses and porous silicon layers are studied by using picosecond pump and probe measurements. Bleaching bands attributed to the saturation of optical transitions in semiconductor nanostructures (crystallites or wires) are registered in time-resolved differential transmission spectra for both of the materials under investigation. It is found that porous silicon exhibits strong and fast optical nonlinearity (third-order nonlinear susceptibility is about 10-s esu; transmission recovery time is 30 - 40 ps) which can be used for optical switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.