Abstract

A new finite element formulation for the solution of electromechanical boundary value problems is presented. As opposed to the standard formulation that utilizes a scalar electric potential as nodal variables, this new formulation implements a vector potential from which components of electric displacement are derived. For linear piezoelectric materials with positive definite material moduli, the resulting finite element stiffness matrix from the vector potential formulation is also positive definite. If the material is nonlinear in a fashion characteristic of ferroelectric materials, it is demonstrated that a straightforward iterative solution procedure is unstable for the standard scalar potential formulation, but stable for the new vector potential formulation. Finally, the method is used to compute fields around a crack tip in an idealized non-linear ferroelectric material, and results are compared to an analytical solution.© (2002) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.