Abstract

For nonlinear and adaptive control of smart structures direct and indirect neural network control strategies have been suggested. In indirect neural network control the identified plant models are usually implemented as black-box neural networks using no a priori knowledge. Designing a neural network for system identification using dimensional analysis results in neural networks, where in contrary to black-box solutions no dimensionally inhomogeneous states can occur. Furthermore, the generalization and learning properties of neural networks designed using dimensional analysis are usually improved compared to conventional black-box networks. This work describes a technique of using neural networks for system identification and control, where the neural network has been constructed according to a dimensional analysis of the governing equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.