Abstract

Biodegradable polymeric nanofibrous scaffold comprises individual nanofibers where their stiffnesses can promote or undermine the various cellular functions as well as structural integrity of the scaffold. As such, there is a need to investigate the nanomechanical properties of these individual nanofibers. However, conducting mechanical tests of individual fibers at the nanometer scale can pose great challenges and difficulties. Here, we present novel techniques to perform nanomechanical testing of individual polymeric nanofibers. For demonstration of the nano tensile tests, polycaprolactone (PCL) nanofibers were produced via electrospinning. These fibers were deposited across two parallel edges of a cardboard frame so that a single nanofiber can be isolated for tensile test using a nano tensile tester. For nanoscale three-point bend test, a Poly (L-lactic acid) (PLLA) nanofiber was suspended across a microsized groove etched on a silicon wafer. An atomic force microscope (AFM) tip was then used to apply a point load on the mid-span of the suspended fiber. Beam bending theory was then used to calculate the elastic modulus of the nanofiber. For nanoindentation test, a PLLA nanofiber was deposited on a mica substrate and an AFM tip used to indent the nanofiber. Modified Hertz theory for normal contact was then used to evaluate the elastic modulus of the nanofiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.