Abstract
The human vision system performs the tasks of dynamic range compression and color constancy almost effortlessly. The same tasks pose a very challenging problem for imaging systems whose dynamic range is restricted by either the dynamic response of film, in case of analog cameras, or by the analog-to-digital converters, in the case of digital cameras. The images thus formed are unable to encompass the wide dynamic range present in most natural scenes. Whereas the human visual system is quite tolerant to spectral changes in lighting conditions, these strongly affect both the film response for analog cameras and the filter responses for digital cameras, leading to incorrect color formulation in the acquired image. Our multiscale retinex, based in part on Edwin Land's work on color constancy, provides a fast, simple, and automatic technique for simultaneous dynamic range compression and accurate color rendition. The retinex algorithm is non-linear, and global-- output at a point is also a function of its surround--in extent. A comparison with conventional dynamic range compression techniques such as the application of point non- linearities. The applications of such an algorithm are many; from medical imaging to remote sensing; and from commercial photography to color transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.