Abstract

This paper presents several milestones in the development of techniques to be used as an optical biopsy for dermatology. The instrumentation for multiphoton excitation microscopy as applied to in vivo human skin is described. We compare multi-photon excitation microscopy and reflected light confocal microscopy for the microscopic observation of human skin in vivo. Multi-photon excitation is induced by a 80 MHz pulse train of femtosecond laser pulses at 780 nm wavelength. This nonlinear microscopic technique is inherently suitable for tissue fluorescence imaging because of its deeper penetration depth and lower specimen photodamage. This technique has non-invasively obtained tissue structural information in human epidermis and dermis. Confocal light microscopy based on a white light source, or a laser source can provide video-rate image acquisition with high resolution and high contrast. The relative merits of these two techniques can be identified by comparing 3D resolved images obtained from the forearm skin of the same volunteer. Optical low coherence reflectometry is another technique to image human skin in vivo. The application of Fourier transform analysis to the surface structure of skin is described as a method to characterize the skin surface topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.