Abstract

A multiobjective optimization procedure is developed for rotating composite box beams with discrete piezoelectric actuators. A rotating composite cantilever box beam model is presented that includes piezoelectric elements used as induced-strain actuators for vibration control. The model is implemented using the finite elements method. Multiple design objectives are efficiently combined using a multiobjective optimization formulation. Actuator locations and ply-stacking sequences are represented with discrete (0,1) variables while structural/control parameters such as box beam dimensions are continuous design variables. A transformation technique is used to formulate the combined continuous/discrete problem. This allows both optimal actuator locations and structural/control parameters to be determined inside a closed loop procedure. A technique based on simulated annealing is used for optimization in conjunction with an approximate analysis technique to reduce computational effort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call