Abstract

Multi-level approximated Fresnel zone lenses with reduced level numbers in the outer zones are investigated and compared with Fresnel zone lenses of unique level numbers over the whole lens. Calculations of the fabrication error effects on diffraction efficiency for both lens types are performed. Measurements of focussing efficiency show that. especially for Gaussian beam illumination, segmented Fresnel zone lenses can reach nearly as high focussing efficiencies as normal Fresnel zone lenses. Arrays of segmented lenses can be fabricated using only one binary Fresnel zone lens mask with the aid of a modified optical stepper with fixed scaling down factors in the ratio of 1: 1/(root)2 from one to the next step of pattern transfer in the lithographic process. The fabrication of such lenses could be advantageous because the generation of precise e-beam written masks with a large number of binary ring zones is time consuming and expensive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call