Abstract

This article proposes a general theory and methodology, called the minimax entropy principle, for building statistical models for images (or signals) in a variety of applications. This principle consists of two parts. (1) Maximum entropy principle for feature binding (or fusion): for a given set of observed feature statistics, a distribution can be built to bind these feature statistics together by maximizing the entropy over all distributions that reproduce these feature statistics. The second part is the minimum entropy principle for feature selection: among all plausible sets of feature statistics, we choose the set whose maximum entropy distribution has the minimum entropy. Computational and inferential issues in both parts are addressed. The minimax entropy principle is then corrected by considering the sample variation in the observed feature statistics, and a novel information criterion is derived for feature selection. The minimax entropy principle is applied to texture modeling. Relationship between our theory and the mechanisms of neural computation is also discussed.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.