Abstract

A mammographic stereotactic core biopsy instrument can be adapted for laser hyperthermic ablation of breast cancer. The object of this study is to characterize laser endohyperthermia ex-vivo and in-vivo to develop a reliable approach leading to human trials. Light of a Nd:YAG laser passed through a fiberoptic cable to a diffusing quartz tip upon entering surrounding tissues can bring about very high temperatures. This approach concentrating on the heat distribution to fat and fibrofatty tissue, first analyzed a physical model into which both the quartz tip and thermocouple needles were placed. Temperature recordings in volume through a time course demonstrated a progressive thermal increase around the tip. Additional light distribution studies in several media demonstrated the tip's output. The technique transferred to ex-vivo human breast and porcine fibrofatty tissue showed similar findings leading to an in-vivo analysis of subcutaneous porcine fibrofatty tissue. A step-down energy program beginning at 20 watts and decreasing to 15 watts, 10 watts, and to 7 watts, at 30 second intervals was held at the latter power for the remainder of 6 minutes. Three such cycles appear to be the optimal treatment program to develop temperatures between 60 degrees Celsius and 80 degrees Celsius (approximately equals 9700 joules). In-vivo experiments conducted on 5 occasions revealed no skin change. At necropsy the treated tissues demonstrated a circular sharply defined 3 cm volume of necrosis with no change in adjacent tissue. Time-temperature correlations between ex-vivo and in-vivo tissues showed great similarity. Nd:YAG laser energy distributed to a quartz tip through a fiberoptic cable is capable of uniform, complete tissue destruction to a 1 1/2 cm radius with no change beyond that field. This technique with further refinement will be appropriate to the treatment of small breast cancers that have been stereotactically biopsied.© (1996) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.