Abstract

Three different types of deformable mirror Spatial Light Modulators (SLMs) based on device concepts like Viscoelastic Control Layer (VCL), Cantilever Beam Mirror (CBM), and Moving Liquid Mirror (MLM) have been developed. All of them allow to create deformation profiles which act as phase gratings whose period is defined by the pitch of the pixel electrodes. The diffraction of the incident light is used to achieve spatial light modulation. The operation principles of the different types of SLMs are outlined in detail. All the mentioned SLMs can be manufactured on top of a high voltage CMOS circuitry. SLMs with up to 2 million pixels in analog operation mode have been realized up to now. The benefits of the different approaches with respect to fabrication aspects and respect to different applications will be addressed. For the angular deflection of light a new type of resonant microscanner mirror was developed. The device is based on a silicon micromechanical torsional actuator. The new approach for the configuration of the electrodes and the resulting driving principle allows to achieve large scanning angles (plus or minus 30 degree optically at atmospheric pressure) at low driving voltages (20 V max.) and low power consumption (less than 1 (mu) W). The operation principle of the new device enables the realization of 2D scanners as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call