Abstract

Microgrooves (width 6, 7, and 8 micrometer, each with length 20, 30, and 40 micrometers, respectively; depth 4.5 micrometers; number 4704 in parallel of one size per chip; chip dimensions 12 multiplied by 12 mm) photofabricated in the surface of a single-crystal silicon substrate were converted to leak-proof microchannels by tightly covering them with an optically flat glass plate. Using the microchannels as a model of physiological capillaries, total flow rate of heparinized whole blood taken from healthy subjects was determined under a constant suction of 20 cmH<SUB>2</SUB>O, while flow behavior of blood cells through individual channels was microscopically observed. The apparent viscosity (ratio to that of saline) of whole blood was obtained as 4.7 plus or minus 0.5, 3.7 plus or minus 0.3, and 3.4 plus or minus 0.2 (mean plus or minus SD, n equals 4) for 6, 7, and 8 micrometer width channels, respectively. Normal leukocytes passed, showing a round shape, through the channels much more slowly then erythrocytes, but caused no appreciable interference with passage of erythrocytes. Meanwhile, cells exposed to the chemotactic peptide FMLP (1 - 10 nM) and bacterial cells (Escherichia coli K 12; 6 multiplied by 10<SUP>6</SUP>/ml) slowed further greatly, showing very irregular shapes, and eventually blocked the channels. Such a response of leukocytes took place immediately after the exposure to FMLP, but it appeared gradually with time after the exposure to the cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.