Abstract

Properly measured experimental Mueller matrix contains complete information on depolarization, anisotropy properties of studied object and on value of isotropic change of probated radiation intensity by studied object as well. They know that Jones matrix contains complete information on value of isotropic change of probated radiation intensity and on anisotropy properties of studied object. Thus, in the case of absent of depolarization and measurement errors reducing to existence of, so called, overpolarization there exist a one-to-one correspondence between Mueller and Jones matrix. Mueller matrix will then be called a Mueller-Jones matrix. The possibility of extraction of Mueller-Jones part out of any experimental Mueller matrix is extremely important because of following. First, it allows us to obtain everything about depolarization properties of studied object directly. Depolarization is very informative 'object' and now, in the majority, one knows little about its nature and methods of its complete description. Second, one gets the possibility to operate with correspondent Jones matrix to analyze of which there exist the powerful methods such as solving of the spectral problem and application of the decomposition theorem formerly proved by the present authors. The distinctive feature of the method proposed here is that it allows us in the best way to take into consideration the important fact that far from all elements of initial Mueller matrix contains information on depolarization.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.