Abstract

This study illustrates the behavior of a closed-loop vibration control system making use of electrorheological (ER) devices. Material properties of ER suspensions (primarily the yield stress, and visco-elastic properties) increase by several orders of magnitude when subjected to strong electrical fields (kV/mm). Because the electric field controls the yielding behavior of ER materials, ER devices are inherently non- linear. A Lyapunov-based controller is designed to attenuate seismically-induced structural motions. Using this controller, the control decisions are independent of the structural model, and are therefore robust to modeling errors. Structures operated according to the control rule maintain an anti- resonant condition. This is demonstrated in the time-domain and the frequency domain. A numerical study, incorporating an evolutionary model for the ER device illustrates the robustness of this control method to model uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.