Abstract

A novel direct-write glass metallization based on laser induced plasma assisted ablation (LIPAA) was investigated. Laser is passed through a glass substrate and irradiated onto a metal target placed beneath the substrate. By tuning laser fluence above target ablation threshold, target ablation and plasma generation occur. The plasma flies towards the glass at a high speed and deposits metal materials onto glass backside surface. Metal films were fabricated and their sheet resistances were measured by a four-point probe. It was found that sheet resistances of the metal films vary with processing parameters. Experimental results reveal that low resistivity metal film (< 0.3 Ω/∠) can be obtained at an optimal laser scanning speed and pulse repetition rate. When target-to-substrate distance increases, film resistance also increases. Optimal design of overlap schemes among metal tracks provides a lower film resistance. Meanwhile, thin film and bulk metal targets were used to study their difference on film resistance. It was discovered that deposition using thin film target is more efficient. Laser annealing technique was also applied to activate the deposited metal materials to get higher quality glass surface metallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.