Abstract
In this paper, we propose a novel loopback approach in a two-level streaming architecture to exploit collaborative client/proxy buffers for improving the quality and efficiency of large-scale streaming applications. At the upper level we use an overlay to deliver video from a central server to proxy servers, at the lower level a proxy server delivers video with the help of collaborative caches. In particular, a proxy server and its clients in a local domain cache different portions of a video and form delivery loops. In each loop, a single video stream originates at the proxy, passes through a number of clients, and is passed back to the proxy. As a result, with limited bandwidth and storage space contributed by collaborative clients, we are able to significantly reduce the requirements of network bandwidth, I/O bandwidth, and cache space at a proxy. Furthermore, we develop local repair schemes to address the client failure issues for enhancing server quality and eliminating most repairing load at servers. For popular videos, our local repair schemes are able to handle most of single-client failures without service disruption and retransmissions from a central server. Our analysis and simulations have shown the efficacy of loopback in various settings.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.