Abstract

The performance of Hg<SUB>1-x</SUB>Cd<SUB>x</SUB>Te long wavelength infrared (LWIR) photoconductors is strongly dependent on the semiconductor surface conditions and contact characteristics. In this paper we review these effects in relation to obtaining an optimum device technology suitable for use in two-dimensional infrared focal plane arrays (IRFPAs) based on the fabrication of high performance LWIR photoconductors on epitaxially grown Hg<SUB>1-x</SUB>Cd<SUB>x</SUB>Te. Although the proposed design can be applied to a variety of epitaxially grown Hg<SUB>1-x</SUB>Cd<SUB>x</SUB>Te material, for optimum performance the starting Hg<SUB>1-x</SUB>Cd<SUB>x</SUB>Te semiconductor consists of epitaxially grown heterostructure layers in which a two-dimensional mosaic of lateral design photoconductors are fabricated. The heterostructure layer provides high performance devices at greatly reduced power dissipation levels, while the unique design allows for the high density integration of photoconductors in a two-dimensional array geometry with high fill factor. The proposed photoconductor array with n<SUP>+</SUP> blocking contacts has been experimentally verified in a 3 X 3 array format with all elements in the array exhibiting background limited infrared photodetector (BLIP) performance at 80 K. Performance issues such as response uniformity, pixel yield, fill factor, crosstalk, power dissipation, detector impedance, array architecture, and maximum array size are discussed in relation to the suitability of the proposed photoconductor structure for use in IRFPA modules. It is found that in many cases the proposed photoconductor technology has the potential to deliver significant advantages, such as higher yield, higher fill factor, better uniformity, less crosstalk, and larger potential array size, in comparison to an IRFPA design based on photovoltaic technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.