Abstract
A novel framework is proposed for lossless authentication watermarking of images which allows authentication and recovery of original images without any distortions. This overcomes a significant limitation of traditional authentication watermarks that irreversibly alter image data in the process of watermarking and authenticate the watermarked image rather than the original. In particular, authenticity is verified before full reconstruction of the original image, whose integrity is inferred from the reversibility of the watermarking procedure. This reduces computational requirements in situations when either the verification step fails or the zero-distortion reconstruction is not required. A particular instantiation of the framework is implemented using a hierarchical authentication scheme and the lossless generalized-LSB data embedding mechanism. The resulting algorithm, called localized lossless authentication watermark (LAW), can localize tampered regions of the image; has a low embedding distortion, which can be removed entirely if necessary; and supports public/private key authentication and recovery options. The effectiveness of the framework and the instantiation is demonstrated through examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.