Abstract

A graded index type lens can be attained by utilizing the liquid crystal molecular orientation effects in an axially symmetrical electric field which is produced by the circular hole-patterned electrode. The liquid crystal (LC) microlens has a variable focusing property and is easy to make large scale of lens array because of its simple structure. Excellent lens properties can be obtained by optimizing the electrode structure, driving voltage and etc., and the focusing spot size is as small as the diffraction limit. We can expect a new type of lens as an active device for light control by the LC microlens. However, time response of the LC microlens is usually very slow and it has a large aberration caused by the liquid crystal molecular orientation. In this paper, fabrication and fundamental properties of the LC microlens are briefly reviewed, and then the improvement of response and optical properties are discussed. The response and recovery time can be extremely reduced by introducing the polymer stabilization technique using UV curable LC materials. In addition, the aberration can be eliminated by introducing divided electrode structure. The new electrode structure can also provide free space focusing and deflection properties to the LC microlens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.