Abstract

The study of light induced processes on atoms and nanoparticles confined in organic films or in dielectric structures is motivated both by fundamental interest and applications in optics and photonics. Depending on the light intensity and frequency and the kind of confinement, different processes can be activated. Among them photodesorption processes have a key role. Non thermal light induced atomic desorption has been observed from siloxane and paraffin films previously exposed to alkali vapors. This effect has been extensively investigated and used both to develop photo-atom sources and to load magneto-optical traps. Recently we observed huge photodesorption of alkali atoms embedded in nanoporous silica. In this case the atomic photodesorption causes, by properly tuning the light frequency, either formation or evaporation of clusters inside the silica matrix. Green-blue light desorbs isolated adatoms from the glass surface eventually producing clusters, whereas red-near infrared (NIR) light causes cluster evaporation due to direct excitation of surface plasmon oscillations. Green-blue light induces cluster formation taking advantage of the dense atomic vapor, which diffuses through the glass nano-cavities. Both processes are reversible and even visible to the naked eye. By alternatively illuminating the porous glass sample with blue-green and red-NIR light we demonstrate that the glass remembers the illumination sequences behaving as an effective rereadable and rewritable optical medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.