Abstract

We report the fabrication of efficient green light-emitting diodes using a side-chain polymer based on a high-electron affinity (EA) naphtalimide moiety (PNI). The chromophore is attached to a polymethacrylate backbone through a spacer, and emits in the green with high efficiency. In single-layer light-emitting diodes (LEDs), we find that the electroluminescence (EL) efficiency is not limited by Al cathodes as for poly(p-phenylene-vinylene), PPV, and we attribute this to the increased EA. We report maximum internal efficiencies of about 1.7 percent for Ca and 0.9 percent for Al in double-layer devices where PPV serves as both Hole-injector and emitter. Compared to some oxadiazole based electron injection/transport layer, PNI gives higher efficiencies at high currents, and longer lifetimes. Tuning of emission in the red is possible by dye-doping the PNI and causing the emission to happen in this layer. We discuss the properties of the different device configurations with a view to the electronic structure of the materials and in particular to the influence of the thickness of the individual layers on efficiency and driving conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call