Abstract
Light scattering induced by turbulent flow in seawater has been studied and the effect of seawater turbulence on the propagation of a collimated light beam has been characterized. Our approach is to describe the interaction of light with inhomogeneities in the refractive index (IRI) by solving Maxwell's equations. This set of equations is converted into the parabolized Helmholtz equation in the case of light propagating through water with IRI. We characterize the light scattering within a water parcel by the volume scattering function (VSF). Field measurements of small-angle VSF exhibit a sharp peak which is orders of magnitude greater than that obtained from either laboratory measurements or Mie calculations for suspended particles. Our computer simulations show that the volume scattering function obtained is indeed characterized by an exponential decrease with scattering angle and is in quantitative agreement with in situ observations in the case of high temperature variance dissipation, (chi) . It appears that 0(1 degree(s)) is the upper limit of turbulent induced light scattering in the ocean.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.