Abstract
The propagation of light in biological tissues has been studied theoretically by Monte Carlo simulations and experimentally in vitro on bovine and porcine liver, human breast tissues and fat emulsions. The spatial intensity profile of a scattered collimated beam is measured at the output surface of the sample and compared to theoretical predictions. Measurements on fat emulsions and liver are in good agreement with theory. Absorption and reduced scattering coefficients can be obtained by finding a simulated profile matching our experiments. The precision of these values has been confirmed by the comparison between simulations and experiments on the temporal spread of light pulses. On the contrary the width of the spatial intensity profiles measured on breast tissues are systematically too large to be predicted by our simulations. The heterogeneity of the sample, not considered in simulations, could explain these differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.