Abstract

A particle deflector operating on the principle of laser-induced ablation may eliminate collisions between spacecraft and small debris in low earth orbit. A practical system is constrained to deflecting particles up to a few grams mass with velocities up to 10 km/s. Fundamental concerns for such a system include particle detection and tracking, beam formation, beam steering, and energy coupling to the target. The limiting technology is the detection and tracking system, which must located fast moving (10 km/s) objects 1 cm or smaller in diameter at distances greater than 1 km. We show that a 2000 J laser beam can deflect at 10 mrad a 1-g particle approaching at 10 km/s--adequate to protect a modest sized (approximately 10 m) space structure if the particle is intercepted while still 1 km away. Methods for delivering large optical power densities onto a small (approximately 1 cm) target over moderate (1000 m) distances are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.