Abstract
We determined the wavelength dependence of the minimum spot size of a laser beam focused through human sclera to evaluate the potential for transcleral glaucoma surgical techniques using ultrashort-pulsed lasers. The spectrum of the forward scattered light was measured by collimating the incident and transmitted beam in a spectrophotometer. This spectrum shows that sclera is highly scattering until 1100 nm, after which, the transmission spectrum is similar to water. To measure the minimal spot size, a laser beam was focused on the back surface of sclera of differing thickness. The minimum spot at 800 nm, 1060 nm, 1301 nm, and 1557 nm was imaged. At 800 nm, the spot size was invariant upon focal lens position, being a thousand fold larger than the incident beam spot size. As the wavelength increased, the area of the spot decreased, so that at 1557 nm, the minimal spot size was on the order of the incident beam spot size.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.