Abstract

Large-scale sensor array management has applications in a number of target tracking problems. For example, in ground target tracking, hundreds or even thousands of unattended ground sensors (UGS) may be dropped over a large surveillance area. At any one time it may then only be possible to utilize a very small number of the available sensors at the fusion center because of bandwidth limitations. A similar situation may arise in tracking sea surface or underwater targets using a large number of sonobuoys. The general problem is then to select a subset of the available sensors in order to optimize tracking performance. The Posterior Cramer-Rao Lower Bound (PCRLB), which quantifies the obtainable accuracy of target state estimation, is used as the basis for network management. In a practical scenario with even hundreds of sensors, the number of possible sensor combinations would make it impossible to enumerate all possibilities in real-time. Efficient local (or greedy) search techniques must then be used to make the computational load manageable. In this paper we introduce an efficient search strategy for selecting a subset of the sensor array for use during each sensor change interval in multi-target tracking. Simulation results illustrating the performance of the sensor array manager are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call