Abstract
Alternative vibration control systems are of interest to the appliance industry to improve the performance of the automatic washer suspension. Consumer benefits from improved suspension performance include noise and vibration reduction, lighter machines and larger baskets for increased clothes load capacity. Passive dynamic absorbers are investigated because of their ability to control system resonances and absorb energy from vibrating components. Since the suspended mass is variable due to different clothes loads and the amount of water in the clothes, performance limitations exist for the passive vibration absorber. Adaptive passive dynamic absorbers are investigated as an alternative vibration control system. A set of design variables and constraints for a fundamental model of an automatic washer suspension incorporating both passive and adaptive passive dynamic absorbers is presented. Numerical integration is used to obtain each system response. Optimization of the fundamental automatic washer model incorporating a passive dynamic absorber is performed. Design of experiment techniques and general design studies are used to gain information concerning the importance of the design variables on the performance of the adaptive passive dynamic absorber. Both ideal and real absorber stiffness controller schemes are investigated. The results suggest some benefit of applying adaptive passive dynamic absorbers. Design constraints are found to play a major role in the feasibility of application of this technology to the appliance industry. When considering design cost and performance, the optimum passive dynamic absorber is shown to be the better choice. Examples of various methods of implementation of both passive and adaptive passive dynamic absorbers to an automatic washer are presented.© (1996) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.