Abstract
Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase-velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 349 degree(s)C and 399 degree(s)C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.