Abstract

The intersubband transition (ISBT) in nitride quantum wells (QWs) is considered to be an excellent device mechanism for ultrafast optical switches capable of 1 Tb/s operation at room temperature. The 1.55-micrometers ISBT is feasible because of a large (approximately 2 eV) conduction band discontinuity in AlGaN/GaN QWs. The intersubband relaxation time in AlGaN/GaN QWs was calculated to be about 100 fs, which is 25 times shorter than that in AlAs/(In)GaAs QWs. The fast relaxation in nitride semiconductors is due to the strong interaction between electrons and LO-phonons. Intersubband absorption in the wavelength range of 3 - 7 micrometers was observed in MOCVD-grown AlGaN/GaN QWs, and the ultrafast response of the ISBT in nitrides was experimentally verified. The ISBT wavelength in the nitride QWs, however, was found to be affected by a strong built-in field (approximately MV/cm) caused by the spontaneous polarization and piezoelectric effect. A design to realize the ISBT at the communication wavelength in AlGaN/GaN QWs with a strong built-in field is discussed. Next, we report on an ultrashort pulse propagation model for nonlinear optical waveguides utilizing the intersubband absorption in AlGaN/GaN QWs. The finite-difference time-domain approach in conjunction with the rate equations describing the ISBT was adopted. Ultrafast optical gate operation in the waveguide was simulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.