Abstract
In this paper, we propose an efficient method for integrated segmentation and recognition of connected handwritten characters with recurrent neural network. In the proposed method, a new type of recurrent neural network is developed for training the spatial dependencies in connected handwritten characters. This recurrent neural network differs from Jordan's and Elman's recurrent networks in view of functions and architectures because it was originally extended from the multilayer feedforward neural network for improving the discrimination and generalization power. In order to verify the performance of the proposed method, experiments with the NIST database have been performed and the performance of the proposed method has been compared with those of the previous integrated segmentation and recognition methods. The experimental results reveal that the proposed method is superior to the previous integrated segmentation and recognition methods in view of discrimination and generalization ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.