Abstract

The use of a laser range sensor in the 3D part digitalization process for inspection tasks allows very significant improvement in acquisition speed and in 3D measurement points density but does not equal the accuracy obtained with a coordinate measuring machine (CMM). Inspection consists in verifying the accuracy of a part related to a given set of tolerances. It is thus necessary that the 3D measurements be accurate. In the 3D capture of a part, several sources of error can alter the measured values. So, we have to find and model the most influent parameters affecting the accuracy of the range sensor in the digitalization process. This model is used to produce a sensing plan to acquire completely and accurately the geometry of a part. The sensing plan is composed of the set of viewpoints which defines the exact position and orientation of the camera relative to the part. The 3D cloud obtained from the sensing plan is registered with the CAD model of the part and then segmented according to the different surfaces. Segmentation results are used to check tolerances of the part. By using the noise model, we introduce a dispersion value for each 3D point acquired according to the sensing plan. This value of dispersion is shown as a weight factor in the inspection results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.