Abstract

An inertial actuator, also known as a proof mass actuator (PMA), applies structural forces by reacting against an inertial mass. This paper introduces a class of recently developed piezoceramic PMA and its application to reduce vibration and structure-borne noise. The design incorporates displacement amplification to efficiently achieve low resonant frequency. A method is presented for assessing the efficiency of a piezoceramic PMA and comparing the power density of competing PMA technologies (ie, voice-coil vs. piezoceramic vs. magnetostrictive). The performance of the PMA is demonstrated by measuring the force generated against an infinite impedance and measurements on a structure representative of a turbo-prop fuselage. The experimental testing demonstrates the validity of a simple vibration absorber model in understanding PMA performance on complex structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.