Abstract

The smoothing of the spatial illumination of an inertial confinement fusion target is examined by its spatial frequency content. It is found that the smoothing by spectral dispersion method, although efficient for glass lasers, can yield poor smoothing at low spatial frequency. The dependence of the smoothed spatial spectrum on the characteristics of phase modulation and dispersion is examined for both sinusoidal and more general phase modulation. It is shown that smoothing with non-sinusoidal phase modulation can result in spatial spectra which are substantially identical to that obtained with the induced spatial incoherence or similar method where random phase plates are present in both methods and identical beam divergence is assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.