Abstract
The first portion of this paper addresses the impact of thermal blooming in viewing extended target images. Topics discussed include the nature of the degradation and how images are modeled based on principles of incoherent imaging and anisoplanatism. Characteristics of images for several realistic scenarios are discussed, quantitatively, in the context of parameters normally associated with the forward propagation, only. The wave optics approach used in the simulation is shown to agree with published experimental results. The second portion of the discussion deals with image compensation in correcting for the effects of blooming. Such compensation is achieved by simulating a multiple thermal source, low bandwidth, return wave adaptive optics system. Incoherent point spread functions are corrected through various Zernike modes based on information from the closed loop optimization. Each spread function, corresponding to an isoplanatic region, is convolved with the appropriate object field to reconstruct the improved, extended image. Residual image distortion, degradation in peak irradiance, and adaptive optics loop stability is discussed for several examples, with respect to degree of correction and wavelength sensitivity.*
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.