Abstract

The detection of landmines and buried objects requires methods that can cover large areas rapidly while providing the required sensitivity to detect the optical and spectroscopic contrasts in soil properties that can reveal their presence. These conditions on contrast and coverage can be met by capturing images of the soil at wavelengths which are sensitive to the properties modified by the presence of buried objects. In this work we investigate both imaging and scanning methods which may have some utility for the detection problem. In the imaging approach, we capture hyperspectral reflection images using an acousto-optic tunable filter (AOTF) and fluorescence images using a long-pass filter. For the scanning method, we acquire data point-by-point over a two-dimensional grid with a single emitter/detector pair. The results illustrate the potential of these two approaches for detection of landmines and buried objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.