Abstract

In this work we report on the development of biochips for the rapid analysis of single cells and other particles. We have developed a device that can simultaneously measure the optical and electrical properties of single cells or other micron-scale particles. The micro flow-cytometer chip consists of a planar electrode array onto which a micro-fluidic channel is fabricated from polyimide. The electrodes are used to measure the impedance of single cells flowing through the channel at hundreds per second. The impedance of single particles is simultaneously measured at typically two separate frequencies (e.g. 0.5MHz and 2MHz) using a lock-in system and high specification instrumentation amplifiers mounted on top of the micro-fluidic chip. The impedance data provides information on the membrane characteristics of cells and also the size of the particle. In addition a three-wavelength confocal optical system has been developed which is used to simultaneously interrogate the optical properties of particles. The device can detect small numbers of fluorescently labelled rare particles in a sample and has been used for the analysis of blood and suspensions of latex beads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.