Abstract
In this paper we investigate the performance of a SCS-6/Ti-15-3 composite system, a carbon/SiC woven composite system, and an AS4/3501-6 composite system, subjected to long term mechanical fatigue, with an extrinsic Fabry-Perot interferometric (EFPI) fiber optic strain sensor. Both stiffness reduction and the degradation of thermal expansion coefficient (TEC) are monitored. The obtained results show that the EFPI sensor provides reliable data during long term fatigue loading up to 1 million cycles. The results suggest that the EFPI sensor is a viable means to monitor current and proposed characteristic damage metrics for various composite systems. We also monitor the TEC degradation during the thermal fatigue of celion G30-500/PMR-15 woven cross-ply composite system, and present a simple micromechanical model, that employs a shear lag approach, utilized to predict the effect of matrix cracking on the TEC of the composite. Results show that good agreement between experimental data and theoretical results is obtained, and that this parameter changed by as much as 80% over the fatigue life of the composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.