Abstract

A general model for digital photogrammetry has been developed, integrating area-based multi- image matching, point determination, object surface reconstruction and orthoimage generation. Using this model the unknown quantities are estimated directly from the pixel intensity values and from control information in a nonlinear least squares adjustment. The unknown quantities are the geometric and radiometric parameters for the description of the object surface (e.g. the heights of a digital terrain model and the intensity values of all points on the surface), and the orientation parameters of the images. Any desired number of images, scanned in various spectral bands, can be processed simultaneously. The convergence radius or pull-in range, known to be rather poor (a few pixels only) in least squares matching, is considerably extended, and the computation time is considerably reduced by using a hierarchical procedure with image pyramids. Some tests using this approach on real aerial imagery were made. They constitute the first controlled tests of the approach and prove its applicability for practical needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call