Abstract

A genetic algorithm (GA) for pattern recognition analysis of optical sensor data has been developed. The GA selects feature sets based on their principal component (PC) plots. A good PC plot can only be generated using features whose variance or information is primarily about class differences. Hence, the principal component analysis routine in the fitness function of the GA acts as an information filter, significantly reducing the size of the search space since it limits its search to features whose PC plots show clustering on the basis of the class. In addition, the GA focuses on those classes and/or samples that are difficult to classify as it trains using a form of boosting. Samples that consistently classify correctly are not as heavily weighted as samples that are difficult to classify. Over time, the algorithm learns its optimal parameters in a manner similar to a perceptron. The pattern recognition GA integrates aspects of strong and weak learning to yield a 'smart' one-pass procedure for feature selection and pattern classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.