Abstract

The work is devoted to research of new methods of ultrasonic deep probing of dispersive structures with large attenuation coefficient (DSLAC) at minimum radiation power. In conventional systems of medical introscopy, a depth of probing is limited by small energy of simple pulse signals. One could think that using the long probing complex signals with small magnitude with receiver's signal compression by means of matched ifiter (MF) for maximization both of SNR and resolving power (as is the case of ordinary radar or sonar systems) would be the simplest way for solving the problem. However, the MF-method is not realizable when probing DSLAC because a law of signal's shape distortion by structure remains unknown. The generalized matched-filter method (GMFM) allows to ensure the deepest probing of a DSLAC with arbitrary law of a signal distortion by structure. GMFM is based on probing a DSLAC with signals that represent the DSLAC's eigenfunctions whose shapes are not distorted by the DSLAC. It allows to increase energy potential, sensitivity and accuracy of medical ultrasonic introscopy. Keywords: energy, depth, sensitivity, accuracy, attenuation, optimum ifitering, ALARA-criterion, eigenftinctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.