Abstract

Output laser parameters are enhanced significantly by using laser pumping. An excellent example is usage of laser diodes for solid-state laser pumping. Although there are permanent advances towards development of this technique, its application for laser systems of more than 100 J output requires time, significant effort and expense. I propose another pumping source based on a rather simple and inexpensive technique and admitted scaling up to energy values which are beyond the reach now with the diodes. This is a pulsed chemical oxygen-iodine laser (COIL) with intracavity frequency doubling. The COIL operates on a laser transition of atomic iodine (1.315 micrometer). The upper laser level populates via energy transfer from metastable oxygen molecules (O<SUB>2</SUB>(<SUP>1</SUP>(Delta) )-singlet oxygen) which formed in a rather simple chemical reaction between an alkaline solution of hydrogen peroxide and gaseous chlorine. The COIL is a gas laser of low pressure (not more than several torrs), having high output parameters and efficiency. A peculiar mechanism of inversion formation makes it difficult to realize a pulsed mode operation by conventional techniques. In particular, there is a limitation of energy stored in large volume. This problem has been solved in our laboratory by forming of atomic iodine with external exposure on some iodides. As a result a pulsed COIL system with an external initiation arose. High optical quality of an active medium and rather high intensity permit us to get 100% intracavity frequency doubling. The wavelength (657.5 nm) is suitable for pumping of some efficient laser materials such as Cr:LiSAF, and garnets codoped with Cr<SUP>3+</SUP> and TR<SUP>3+</SUP> ions. The proposed laser system has the following advantages: (1) scaling by merely increasing the size of the laser, (2) regulated pulse duration from 20 microseconds, (3) well-collimated beam, and (4) repetition rate of about tens Hz. There is a possibility to use the proposed laser system to pump large-size laser elements of laser-drivers for ICF. It is especially interesting to use the proposed pumping source for chirped pulse amplification. Energy of 100 - 200 J can be obtained with currently available pulsed COILs. Thereby a real ability opens for generation of ultrashort pulses of petawatt level output power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call