Abstract

We devised an optical assay for glucose based on the genetically-engineered glucose/galactose binding protein (GGBP) from E. coli and phase-modulation fluorometry. A single cysteine mutation was introduced at position 26 of GGBP. When labeled with the sulfhydryl-reactive probe I-ANS, GGBP showed a more than 50% decrease in florescence intensity with increasing glucose concentration (Kd approximately 1 (mu) M). This is consistent with the glucose-bound structure of GGBP where residue 26 becomes more exposed to the aqueous media. Since minimal lifetime changes were observed with glucose binding, a modulation sensor was devised wherein a long lifetime ruthenium metal-ligand complex (Ru) was painted on the surface of the cuvette containing ANS26-GGBP. Glucose binding resulted in changes in the relative intensities of ANS26-GGBP and Ru which were observed as dramatic changes in the modulation at a low frequency of 2.1 MHz. The modulation measured at 2.1 MHz accurately determines the glucose concentration to plus or minus 0.2 (mu) M.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.