Abstract

Micropipette aspiration is one of the most widely used techniques for measuring the mechanical properties of single cells. The homogeneous linear elastic half-space model has been frequently applied to characterize the micropipette aspiration of chondrocytes and endothelial cells. However, the linear elastic model is limited to small deformation and the half-space assumption is frequently invalidated when moderately large micropipettes are used. In this work, the linear elastic constitutive model is extended to the neo-Hookean constitutive model and the geometry is simulated more realistically by considering the cell as a sphere. The large-deformation contact mechanics problem is solved using dimensionless axisymmetric finite element analysis. The effects of pipette diameter and fillet radius on the cellular rheological behaviour are also systematically studied. Based on the finite element simulation, empirical relationships have been derived for the direct interpretation of the elastic mechanical parameters from the micropipette aspiration experiments. Micropipette aspiration of late-stage malaria-infected red blood cells (schizonts) is conducted. The infected cells are found to exhibit elastic solid behavior in contrast to the liquid drop behavior of healthy red blood cells. The apparent shear modulus of the schizonts, interpreted from the elastic solid model, is found to be 119±62 Pa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.