Abstract

Segmentation of thoracic X-Ray Computed Tomography images is a mandatory pre-processing step in many automated or semi-automated analysis tasks such us region identification, densitometric analysis, or even for 3D visualization purposes when a stack of slices has to be prepared for surface or volume rendering. In this work, we present a fully automated and fast method for pulmonary contour extraction and region identification. Our method combines adaptive intensity discrimination, geometrical feature estimation and morphological processing resulting into a fast and flexible algorithm. A complementary but not less important objective of this work consisted on a quality assessment study of the developed contour detection technique. The automatically extracted contours were statistically compared to manually drawn pulmonary outlines provided by two radiologists. Exploratory data analysis and non-parametric statistical tests were performed on the results obtained using several figures of merit. Results indicate that, besides a strong consistence among all the quality indexes, there is a wider inter-observer variability concerning both radiologists than the variability of our algorithm when compared to each one of the radiologists. As an overall conclusion we claim that the consistence and accuracy of our detection method is more than acceptable for most of the quantitative requirements mentioned by the radiologists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.