Abstract

A novel, silicon crystal monochromator has been designed and tested for use on undulator and focused wiggler beamlines at third-generation synchrotron sources. The crystal utilizes a thin, partially transmitting diffracting element fabricated within a liquid-nitrogen cooled, monolithic block of silicon. This report summarizes the results from performance tests conducted at the European Synchrotron Radiation Facility (ESRF) using a focused wiggler beam and at the Advanced Photon Source (APS) on an undulator beamline. These experiments indicate that a cryogenic crystal can handle the very high power and power density x-ray beams of modern synchrotrons with sub-arcsec thermal broadening of the rocking curve. The peak power density absorbed on the surface of the crystal at he ESRF exceeded 90 W/mm<SUP>2</SUP> with an absorbed power of 166 W, this takes into account the spreading of the beam due to the Bragg angle of 11.4 degrees. At the APS, the peak heat flux incident on the crystal was 1.5 W/mA/mm<SUP>2</SUP> with a power of 6.1 W/mA for a 2.0 H X 2.5 V mm<SUP>2</SUP> beam at an undulator gap of 11.1 mm and stored current up to 96 mA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.