Abstract
The aim of this research is to investigate current methods in Linear Elastic Fracture Mechanics for their suitability to predict crack growth in Aluminum alloy 7050 - T7451, when a compressive residual stress field is introduced by an overload. A comparative study has been made on the effect of various levels of tensile overload on the crack growth rate in Aluminum alloy. Experiments were performed on center-cracked tension specimens at various values of range of stress- intensity-factor ((Delta) K). Crack growth measurements are performed using crack propagation gauges and a travelling microscope. The average crack growth rate is used to determine an effective (Delta) K value for each interval using the fatigue crack propagation curve. After the application of overloads, the propagation gauges revealed a period of significant retardation before the crack growth rates returned to their baseline levels. The results from the numerical predictions are compared with the experimental results. The prediction model produces conservative results for both constant amplitude crack growth and overload induced retarded growth.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.