Abstract
We demonstrate that human-vision-model-based image quality metrics not only correlate strongly with subjective evaluations of image quality but also with human observer performance on visual recognition tasks. By varying amorphous silicon image system design parameters, the performance of human observers in target identification using the resulting test images was measured, and compared with the target weighted just-noticeable-difference produced by a human vision model applied to the same set of images. The detectability of model observer with the human observer was highly correlated for a wide range of image system design parameters. These results demonstrate that the human vision model can be used to produce human observer performance optimized imaging systems without the need for extensive human trials. The human vision based tumor detectors represent a generalization of channelized Hotelling models to non-linear, perceptually based models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.