Abstract

We are using Bayesian artificial neural networks (BANNs) to eliminate false-positive detections in our computer-aided diagnosis schemes. In the present work, we investigated whether BANNs can be used to estimate likelihood ratio, or ideal observer, decision functions for distinguishing observations which are drawn from three classes. Three univariate normal distributions were chosen representing three classes. We sampled 3,000 values of x for each of 10 training datasets, and 3,000 values of x for a single testing dataset. A BANN was trained on each training dataset, and the two outputs from each trained BANN, which estimate p(class 1x) and p(class 2x), were recorded for each value of x in the testing dataset. The mean BANN output and its standard error were calculated using the ten sets of BANN output. We repeated the above procedure to estimate the means and standard errors of the two likelihood ratio decision functions p(xclass 1)/p(xclass 3)/p(xclass 2)/p(xclass 3). We found that the BANN can estimate the a posteriori class probabilities quite accurately, except in regions of data space where outcomes are unlikely. Estimation of the likelihood ratios is more problematic, which we attribute to error amplification caused by taking the ratio of two imprecise estimates. We hope to improve these estimates by constraining the BANN training procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.