Abstract

In a number of image compression standards, the motion vectors are generally obtained by the well-known block matching algorithm (BMA), the error image along with the computed motion vectors are encoded. Unfortunately, this widely used approach generates artificial block boundary discontinuities, called blocky artifacts, between the blocks. Since the blocky artifacts are caused by synthesizing the predicted frame using one constant motion vector per block, we propose an algorithm that interpolates the motion vectors before the construction of the predicted image. Naturally, using spatially smooth motion vectors completely eliminates the blocky artifact. However, we can no longer use the motion vectors as provided by the BMA. The optimum motion vectors must minimize the norm of the error image. The proposed algorithm computes the optimum motion vectors, with the interpolation process built into the algorithm. To obtain spatially smooth motion vectors, we use a band-limited interpolation, and thus, we refer to our algorithm as the band-limited motion compensation (BLMC). Our simulations indicate that the BLMC completely eliminates the blocky artifacts, as expected, and in addition provides higher peak-signal-to-noise-ratio in comparison to the traditional BMA based motion compensation (BMC) as well as the overlapped BMC.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.