Abstract

A new type of electro-optic polymer modulator based on guided modes of the Attenuated Total Reflection (ATR) spectrum is described and fabricated. Using a prism to couple a laser beam into a poled polymer thin film, it is found in its ATR spectrum that the fall-offs of the absorbance peaks corresponding to the guided modes can be considered linear. The angular positions of these fall-offs are sensitive to the dielectric coefficient of the poled polymer. If the operating interior angle of the modulator is properly chosen at the midst of these fall-offs, the intensity of the reflected light can be directly modulated by the applied electric field due to the electric-field-induced dielectric coefficient change in the poled polymer film. Compared with the conventional Electro-optical (EO) modulator based on waveguide technology, the insertion loss of the device can be greatly reduced; Compared with the EO modulator based on surface plasmon resonance, the driven voltage can be lessen because that guided wave resonance is much sharper than the surface plasmon resonance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call